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Abstrac t  

Various methods of reducing the effect of termination 
error on radial distribution functions are briefly 
reviewed. A new approach is introduced in which the 
RDF is calculated by generating the Fourier transform 
at predetermined points. The resulting sampled trans- 
form is relatively free of termination ripple and the 
spacing of the points reflects the true resolution of the 
method for the particular, experimentally limited, Smax. 
The optimum choice of sampling points is determined 
in relation to special data terminations such as at a zero 
value of the interference functions or at a peak or 
trough position. The effectiveness of the sampled 
transform routine in reducing termination error is 
demonstrated by applying it to prematurely truncated 
interference functions derived from scattering data 
from atactic polystyrene. The advantage of the sampled 
transform approach to RDF analysis is that it prevents 
a termination discontinuity in the interference function, 
such as is often unavoidable even when special care is 
taken to apply precise corrections to the data, from 
causing an obscuring ripple on the RDF. In fact, in the 
extreme, it enables generation of useful RDF's  of glassy 
polymers from data which have been neither corrected 
nor normalized. 

1. Introduct ion  

In this paper we propose a method of calculating 
sampled radial distribution functions (RDF) from 
scattering data from amorphous materials. Its object is 
the minimization of the termination errors due to the 
finite range of the scattering vector, s (= 4nsinS/;t), 
accessible by experiment. The method is illustrated with 
X-ray diffraction data for atactic polystyrene but it is 
of general applicability. 

For X-rays, the RDF is calculated from fully 
corrected intensity data, I(s), by the formula (Warren, 
1969): 

oo 

G ( r )  = 4 i t r [ p ( r )  - Po] =-2 ~ sZ(s )  sin rs ds, (1) 
n o 

0567-7394/79/040598-06501.00 

where Z(s) = l kI(s)  - ~f2(s)]/g2(s) is the interference 
function, k is the scaling factor (to electron units), 
~ f 2 ( s )  is the sum of independent scattering from one 
unit of composition and g2(s) is a sharpening function, 
usually [~f(s) ]  2 

In practice the integral must have finite limits, Smi, 
and Sma x ( < ( 4 i t / 2 ) ,  which gives rise to errors in the 
RDF. The error due to loss of data between zero and 
Smi . (typically in our experiments Smi, = 0.25/~-1) 
corresponds to variations of electron density with 
wavelengths in real space > 20 A. These variations are 
normally examined in reciprocal space. For most 
materials, the first features in sZ(s) are at about s = 
1 A -~ or greater, and few errors are introduced into the 
RDF by extrapolating sZ(s)  smoothly to zero at s = 0 
(Cargill, 1971). 

Termination at Sma x causes two errors in the RDF: 
(i) loss of resolution, since wavelengths in real space 

< 2it/Sma x are lost, 
(ii) spurious ripples of wavelength 2zt/Sm~x caused by 

the discontinuity in sZ(s) at Sm~ x. 
These ripples are due to sharp peaks in the true RDF 

being convoluted with the cosine transform of the cut- 
off function, h(s) (Waser & Schomaker, 1953; Warren 
& Mozzi, 1975). The cut-off function is given by 

h(s) = 1, 0 < I sl < Sma x 

= 0 ,  I sl >Sma x 

and its cosine transform is 

oo . , ,  s i n  rSma x Sma x . l 1" 
I n~s) cos rs ds - - - -  smc rSm, ,, 

77 d 7t7" I t  
0 

which has its main peak at the origin and subsidiary 
peaks at rSma x = 5 i t / 2 ,  9it/2, 13it/2, etc. 

In polymers, the first and second nearest-neighbour 
distances are fixed by covalent bonds and give sharp 
peaks at about 1.5 and 2.5 A. These are the usual 
source of termination ripple. However, faulty data 
correction or scaling (normalization) can also give a 
prominent peak or trough below 1/t, and hence be a 
source of ripple (Kaplow, Strong & Averbach, 1965). 
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2. Established procedures which minimize termination 
error 

2.1. Subtraction of theoretical scattering 
In (1), the independent scattering, XfZ(s), is subtrac- 

ted from the scaled intensity since it is due to scattering 
within the constituent atoms, which is not usually of 
interest and would also give a large peak at very low r 
and consequently a marked termination ripple. {The 
peak is at the origin in [p(r) - Po] but displaced to low r 
in the function 41tr [p(r)-Po] which is the RDF.} 
Subtraction of ~f2(s )  reduces the amplitude of sZ(s) at 
Sma x and hence reduces the ripple. 

A further modification of this is to include known 
interatomic distances in the theoretical scattering 
(Konnert & Karle, 1973). This will further reduce sZ(s) 
at Sma x. We have developed a similar procedure for 
polymers (Waring, Mitchell & Windle, 1979). 

2.2. Electronic RDF 
The sharpening factor g2(s) decays at high s and 

hence dividing by it causes the data at high s to be 
enhanced. Not only is this data usually the least reli- 
able, but any discontinuity at Smax is increased by 
sharpening, giving an increased ripple. 

Finbak (1949) proposed that the electronic RDF, 
calculated by taking gZ(s) = 1, was more reliable in 
studies of atomic liquids. With g2(s) constant, sZ(s) 
decays more rapidly and termination is less of a 
problem. Sharply defined interatomic distances are, of 
course, broadened by the electron distribution around 
each atom. 

This method was in fact applied in an early RDF 
analysis of polymers by Bjornhaug, EUefsen & 
Tonnesen (1954). 

2.3. Damping functions (convergence factors) 
This is the usual method of dealing with the finite 

range of data and was originally proposed by Bragg & 
West (1930). In (1), sZ(s) is replaced by sZ(s)M(s), 
where M(s) decays monotonically from 1 at s = 0 to 
0.1 or less at s = Sm~x. Waser & Schomaker (1953) 
have analysed a number of different functions, all of 
which broaden the peaks in the RDF whilst reducing 
the spurious ripple. Since M(s) and g2(s) are of some- 
what similar shape, the ratio M(s)/g2(s) is often 
approximately constant over the range 0 to Sm,x and 
hence the resultant RDF is quite similar to the 
electronic RDF. 

The two most common damping functions are the 
artificial temperature factor due to Bragg & West 
(1930); 

( 2"303 sZ'/, 
M(s) = exp SZmax ] 

and the tr termination function (Lanczos, 1966) applied 
to RDF's by Lorch (1969); 

-- ~ sin 
7~S 

The effects of these two functions have been compared 
by Wright & Leadbetter (1976) who favour the latter. 

Any damping function must reduce the resolution 
below that inherent in the limited range of data. 

2.4. F, xtension of data 
Various methods of approximating the experimen- 

tally inaccessible data have been suggested. The 
simplest, though rarely used, is to extrapolate sZ(s) 
smoothly to zero beyond Sma x. The form of the 
extrapolation would be determined by the shape of 
sZ (s) near Smax. 

d'Anjou & Sanz (1978) have used the more easily 
applied method due to Shevchik (1972) where a 
damped sine wave is fitted by least squares to the last 
two oscillations of sZ(s) and then continued to 
approximately 2Sma x. 

More involved methods using forward and back 
transformation have been used by Kaplow, Strong & 
Averbach (1965) [recently applied to polymers by 
Wang & Yeh (1978) and by Gupta & Yeh (1978)] and 
by Hansen, Knudsen & Carneiro (1975). In both cases 
the procedure is based on the assumption of a feature- 
less RDF below r = 1 A, although the second group of 
authors also assume a particular shape for the first two 
peaks in the RDF. 

2.5. Termination at sZ(s) = 0 

If the upper limit of integration is taken as the last 
point at which sZ(s) crosses zero, then the discontinuity 
in sZ(s) is removed, though discontinuities in its first 
and higher derivatives may still remain. As will be 
shown later, this gives a more rapidly decaying ripple 
and hence the RDF is improved. This termination point 
has been used by Wignall, Rothon, Longman & 
Woodward (1977). 

3. Reduction of termination error by sampling 

The treatments described above have taken little 
account of the fact that the resolution in the RDF is 
limited to ~z/smax, indeed the transform has often been 
calculated at much more closely spaced points. Dixon, 
Wright & Hutchinson (1977) have stressed the limited 
resolution and have used a fast Fourier transform 
(FFT) to calculate the RDF at points n/Smax apart. 
However, as will be shown later, these points (r = 
nzC/Smax) will frequently lie near the peaks and troughs 
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of the termination ripple. In general, FFT's  sample at 
twice this spacing (i.e. 2zt/Sm,x, the period of the ripple) 
which would remove all evidence of the ripple. This, of 
course, reduces the resolution but will not necessarily 
diminish the errors. 

We now develop a systematic treatment of sampled 
transforms which minimize errors while optimizing 
resolution. 

The nature of termination error is first illustrated by 
considering some simple, though rather unrealistic, 
forms of sZ(s )  [= x(s)] and comparing their infinite 
transform, Xo(r), and finite transform, X~(r): 

7~ o o  

- G ( r )  = Xo(r) = f x(s)  sin rs ds, 
2 o 

SmlX 

X 1 (r) = f x(s)  sin rs ds. 
o 

We then present a general treatment and show how 
this leads to a general method of sampling the 
transform. 

These are plotted in Fig. 1. It can be seen that X~ 
oscillates as a damped cosine wave about X o, i.e. the 
termination error is" 

1 
X 2 ( r  ) = X 0 - -  X 1 = - c o s  r S m a  x .  

r 

The two transforms are therefore identical at the points 
given by r = (2n + l)zt /2smr 

3.1.2. Sine  wave: x(s)  = sin as. This illustration is 
closer to a well normalized interference function. Its 
infinite transform is" 

Xo(r) = ~o sin as sin rs ds 
o 

OO 

= ½f I c o s ( a -  r ) s - c o s ( a  + r)s] ds 
o 

7t 
= ~[6(a - r ) -  6(a + r)l, 

whereas the finite transform is 

3.1. Error f o r  various f o r m s  o f  x(s)  

3.1.1. Constant: x(s)  = 1. The function to be trans- 
formed can approximate to this at high s if the 
normalization is performed badly. 

The infinite and finite transforms are given by: 

oo 1 
Xo(r) = f sin rs ds = - ,  

o r 

Srnax l 

X~ (r) = f sin rs ds = - (1 - cos rSm,~). 
0 F 

Smix 

Xl(r)  = f sin as sin rs ds 
o 

Smax [sinc (a -- r) Smax - -  sinc (a + r)Sm~ ~] 
2 

This is plotted in Fig. 2. 
As mentioned earlier, the effect of termination is to 

convolute the ideal transform (in this case f-functions) 
with (Sma x sinc rSmax)/n , the cosine transform of the cut- 
off function, h(s). 

!i 
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i ,  

il i 

~i il 
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Fig. 1. The  infinite and  finite (sin, x = 8"0) t r ans fo rm o f x ( s )  = 1.0. 
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Fig. 2. The  finite (Sm, x = 8"0) t r ans fo rm o f x ( s )  = sin a s .  
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The expression for X 1 c a n  be rewritten: 

X~(r) ( r sin aSma x 1 
: ~ ~ . _ ~  COS rSma x 

r 2 _ a 2 ] 

a cos aSma x ) sin 
+ r 2  _ a 2 rSmax" (2) 

Thus, in general, there are two components: a cosine 
ripple decaying as 1/r at large r and a sine ripple 
decaying as 1/r z at large r. The form of the finite 
transform simplifies for particular termination points: 

(a) Termination at a node, i.e. asma x = mn. The first 
term in (2) is now identically zero, whereas the second 
(sine) term has zeros at 

r = n ~ / S m a x ,  

except for n : m, i.e. r = a. 
(b) Termination at a max imum or minimum, i.e. 

aSma x : (2m + 1)n/2. The second term is now identically 
zero and the first (cosine) term has zeros at 

r : (2n + 1)~z/2Smax, 

except for n = m, i.e. r = a. 
Termination at an arbitrary point will give finite sine 

and cosine components. The sine will dominate in the 
region from 0 to a, and the cosine above a. 

3.1.3. General function. The termination error is 
given by: 

0(3 

X 2(r) : f x(s) sin rs ds. 
Smax 

By assuming that x(s) and all its derivatives are zero at 
s = oo and carrying out repeated partial integration, 
X2(r) may be expanded in the series (Erd61yi, 1956): 

X2(r) : X(Smax)COS rSmax/r-  X'(Smax)Sin rSmax/r 2 

-- X"(Smax)COS rSmax/r a 

+ x " '  (Smax) sin rSmax/r 4, etc. (3) 

The assumption that all derivatives tend to zero must 
be satisfied by any real interference function since the 
peaks in the true R D F  must have finite width. 

From (3), we can see that the general termination 
error has cosine components dependent on the zeroth 
and even derivatives at S m a  x and sine components 
dependent on the odd derivatives at Smax. However, 
some of these may be zero for particular termination 
points: 

(a) Termination at a node: X(Smax) = 0. The first non- 
zero term in (3) is now a sine ripple decaying as l/r2: 

X2(r) = --X'(Smax) sin rSmax/r2-- . . . ,  

with the first cosine term decaying as 1/r 3. The error at 
large r is therefore likely to be negligible. This is the 
justification for the method referred to in § 2.5. 

(b) Termination at a max imum or minimum: 
x'(Sma ~) = 0. The first two non-zero terms are now 
cosine ripples decaying as 1/r and 1/r 3 : 

X2(r ) = X(Smax) COS rSmax/r -- X"  (Smax) COS rSmax/r 3 

+ . . . ,  

with the first sine term decaying as 1/r 4. Hence, 
particularly at large r, the termination error is very 
close to zero at values of r corresponding to the zeros 
of cos I'Smax, i.e. 

r - -  (2n + 1)n/2Smax. 

3.1.4. Decay o f  ripple in radial density function.  The 
decay rates at large r, derived above, all refer to the 
radial distribution function, 4nr[p(r) - Po]. It is, how- 
ever, often preferable to plot the radial density function, 
4nr2lp(r) - Po] = rG(r), particularly when looking at 
intermolecular order in the 5 - 3 0 / k  range. In this latter 
case, the residual ripple will be correspondingly more 
prominent at large r, and that due to a finite value at 
Sma x will maintain a constant amplitude. 

3.2. Best sampling points 

We can conclude from the above treatment that: 
(i) the R D F  with termination error oscillates about 

the true: RDF with a period 2n/sma x, 
(ii) for termination at a node, the error is pre- 

dominantly a sine ripple, 
(iii) for termination at a maximum or minimum, the 

error is predominantly a cosine ripple. 

Hence, if we can choose to terminate at one of these 
and sample the transform at the zeros of the dominant 
term, we will minimize the errors. These two possible 
schemes are shown in Table 1. As can be seen, the 
second method gives the more rapidly decaying error. 
In practice, we may need to discard too much of the 
data (say > 20%) in order to terminate at one of these 
special points. In this case, we suggest that the best 
procedure is to sample at the zeros of the cosine ripple, 
r : (2n + 1)n/2Smax, and minimize the sine ripple by 
averaging over three points: 

X ( r ) :  ¼[X(ri_l) + 2X(rl)  + X(rt+l)]. (4) 

Table I. Comparison o f  errors at different sampling 
points 

Approximate 
error 

Terminated at Sampled at in X(r) 

Node x (Smax) : 0 r = nn/Sma x +_ x" (Smax)/r 3 

Maximum or minimum r = (2n + 1)n/2Sma x + X'"($max)/r  4 
X ' ( S m a x )  := 0 

Arb i t r a ry  point  r : n I t / S m a  x +_ x (Smax)/r 

r = (2n + l)n/2Smj x +_ X'(Smax)/r z 



602 RADIAL DISTRIBUTION FUNCTION ANALYSIS 

4. Examples of sampled transforms 

In this section the utility of sampled transforms in 
minimizing termination error is demonstrated with 
scattering data from atactic polystyrene. 

m ~  

& 

v i 

C 

/-.J 

._ 5 _ "~ /  10  
. . . . . . . . . . .  ~ . . . .  ~ . . . . . .  

s (~ " )  

Fig. 3. Interference function for atactic polystyrene. 
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(c) ( f )  

Fig. 4. Transforms of the interference function of Fig. 3. (a), (b), (c) 
are sampled radial density functions for the termination points 
A, B and C (Fig. 3), whereas (d), (e) and ( f )  are the correspond- 
ing conventional radial density functions (+ sampled points). 
Vertical axis is 47rr ~ [p(r) - P0]. 

Fig. 3 is an interference function calculated from 
these data with (1), with g~(s) = [•f(s)] 2. Marked on 
the diagram are three termination points A, B, C. A 
corresponds to the experimental Sma. for these data, 
while B and C are premature terminations chosen to 
coincide with a node and a maximum. 

The radial density functions {4nr2[p(r) - P0]} 
derived from the interference function for these ter- 
mination points are shown in Fig. 4. The transforms are 
arranged in pairs; the left-hand member is discretely 
sampled at the appropriate points, the right-hand 
member is a continuous (conventional) transform. The 
transforms were calculated by Filon's (1928) method. 

The three sampled transforms (Fig. 4a,b,c) are 
similar except for suggestions of a lower resolution 
corresponding to the smaller Smax'S. The actual reduc- 
tion in resolution due to premature termination at 
around Smax/2 is surprisingly small. In this case it 
probably reflects the fact that the resolution of the RDF 
derived from termination A, which is at a general point 
is reduced by the necessary averaging (equation 4). 
There are no discernible termination errors, even at low 
r values. 

The magnitude and period of the termination errors 
in the continuous transforms (Fig. 4d, eo c) clearly 
varies with the termination point. Termination at C 
(Fig. 4 f )  generates a transform dominated by the 
termination ripple, which is not apparent in the sampled 
version (Fig. 4c). The magnitude of the oscillation is 
reduced for termination at A and B, particularly for B. 
However these RDF's still contain considerable ter- 
mination errors which are not visible in the correspond- 
ing sampled transforms. 

5. General summary 

The modification of the RDF analysis procedure by the 
incorporation of sampled transforms greatly reduces 
the problems associated with termination ripple. The 

il i, ;'. 
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s ~ p  t .... 0,k., - • : ,  , o  _ • 2 o  , 3 o  
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(a) (b) 

Fig. 5. (a) Uncorrected intensity function from atactic polystyrene. 
(b) The sampled transform of (a). 
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only ways in which misleading peaks can appear in the 
RDF's  produced in this way is as the result of bad data 
or of poor normalization. In the latter case, the peak(s) 
will be confined to the region below 1/k. 

Fig. 5 shows an extreme case. The intensity function, 
Slexp(S), smoothed but neither corrected nor nor- 
malized, is shown in Fig. 5(a). This would, with a 
traditional transform, give a RDF swamped by 
termination ripple. The result of applying a sampled 
transform is shown in Fig. 5(b). Beyond 5/k, the RDF 
is very similar to that generated from properly 
corrected and normalized data. At low values of r, 
however, it is dominated by the very large peak 
lcentred on the origin in p(r) - P0] which represents the 
distribution of vector lengths between electrons within 
the same atom. This peak obscures the first and second 
nearest-neighbour peaks. For polymers, these are, of 
course, fixed by covalent bonds and are of limited 
interest. 

In demonstrating the feasibility of transforming 
unnormalized data, we are not suggesting that this 
would necessarily be a sensible approach. The point is 
that carrying out corrections for absorption, double 
scattering and the Compton component, to the degree 
of precision required for completely satisfactory nor- 
malization, is an exacting and time consuming task. 
Small uncertainties in the correction factors can lead to 
significant termination problems with conventional 
transforms. The corrections are discussed in more 
detail elsewhere (Waring, Mitchell & Windle, 1979). 

By using sampled transforms, the stringent require- 
ments of perfect normalization can be considerably 
relaxed. Also the fact that the first and second nearest 
neighbours give very sharp peaks in atomic (sharpened) 
RDF's  for polymers means that the interference 
function still has appreciable amplitude at Smax. Con- 
sequently, even with perfect normalization, termination 
error can still be troublesome unless sampled trans- 
forms are employed. 

We suggest that the use of sampled transforms is the 
most appropriate method of minimizing the effect of 
termination error on RDF's.  It is straightforward; it 
does not require judgement, either as to a correctly 
smoothed RDF prior to repeated forward and back- 
ward transformation as in the method of Kaplow, 
Strong & Averbach (1965), or as to the best form of a 
damping function to be applied to the interference 
function. In addition, the points generated on a RDF 
by the sampled transform method are at the spacing 

appropriate to the resolution as determined by the 
experimentally limited Smax. 
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